Object-based Analysis of Lidar Geometric Features for Vegetation Detection in Shaded Areas
نویسندگان
چکیده
The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class. * Corresponding author
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملArchaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala
The successful analysis of LiDAR data for archaeological research requires an evaluation of effects of different vegetation types and the use of adequate visualization techniques for the identification of archaeological features. The Ceibal-Petexbatun Archaeological Project conducted a LiDAR survey of an area of 20 × 20 km around the Maya site of Ceibal, Guatemala, which comprises diverse veget...
متن کاملA Microtopographic Feature Analysis-Based LiDAR Data Processing Approach for the Identification of Chu Tombs
Most of the cultural sites hidden under dense vegetation in the mountains of China have been destroyed. In this paper, we present a microtopographic feature analysis (MFA)-based Light Detection and Ranging (LiDAR) data processing approach and an archaeological pattern-oriented point cloud segmentation (APoPCS) algorithm that we developed for the classification of archaeological objects and terr...
متن کاملAssessment of Lidar Dtm Accuracy in Coastal Vegetated Areas
Digital terrain models (DTM’s) are widely used in coastal engineering. Reliable height information is necessary for different purposes such as calculating flood risk scenarios, change detection of morphological objects and hydrographic numeric modelling. In this specific field light detection and ranging (lidar) replaces step by step other methods such as terrestrial surveying. However, some ne...
متن کامل